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AnisotropicShallow Shells
A procedure for deriving nondimensional parameters and equations for bifurcation
buckling of anisotropic shallow shells subjected to combined loads is presented.
First, the Donnell-Mushtari- Vlasov equations governing buckling of symmetrically
laminated doubly curved thin elastic shallow shells are presented. Then, the rationale
used to perform the nondimensionalization of the buckling equations is presented,
and fundamental parameters are identified that represent measures of the shell
orthotropy and anisotropy. 117addition, nondimensional curvature parameters are
identified that are analogues of the well-known Batdorf Z parameter for isotropic
shells, and analogues of Dunnell's and Batdorf's shell buckling equations are pre-
sented. Selected results are presented for shear buckling of balanced symmetric
laminated shells that illustrate the usefulness of the nondimensional parameters.

Introduction

Understanding the buckling behavior of anisotropic shallow
shells made of laminated composite materials is important for
the structural design of future high performance aircraft. Iden-
tifying fundamental parameters that characterize buckling be-
havior of shells for a wide range of laminate configurations
and materials will greatly aid the preliminary design of aircraft
components such as the fuselage and empennage. More spe-
cifically, nondimensional parameters permit results to be pre-
sented as a series of curves, on one or more plots, that span
a wide range of shell dimensions, loading combinations,
boundary conditions, and material properties. Design charts
of this general nature allow for quick evaluation of several
design alternatives and furnish the designer with insight into
the sensitivity of a particular design to changes in geometry,
loading conditions, boundary conditions, or material prop-
erties. Of equal importance is the potential for nondimensional
parameters to provide insight into the development of scaling
laws for composite shells that will be valuable for relating
subscale tests to full-scale tests during the certificiation phase
of aircraft design. Potentially, well-defined scaling laws would
minimize the amount of full-scale structural testing by using
a series of less expensive subscale tests to complement the full-
scale tests.

Characterizing the buckling behavior of anisotropic shells
is not a trivial task due to the complex deformational coupling
they exhibit. However, there are classes of practical laminated
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composite shells that do not exhibit total deformational cou-
pling. The present study focuses on one such class of shells
commonly known as symmetrically laminated shells. These
shells exhibit anisotropy in the form of material-induced cou-
pling between pure bending and twisting deformations and
coupling between pure biaxial stretching and membrane shear-
ing.

The objectives of the present paper are to present a method
of deriving nondimensional equations for doubly curved an-
isotropic shallow shells subjected to combined loads, and to
identify the fundamental parameters associated with bifur-
cation buckling of these shells. Shells with a high degree of
curvature are known to be sensitive to small imperfections in
their geometry under certain loading conditions, and this im-
perfection sensitivity leads to collapse loads often substantially
lower than a predicted bifurcation buckling load (Almroth and
Brogan, 1972). However, a class of shallow shells exists for
which imperfection sensitivity is minimal under certain loading
conditions (Stein and McElman, 1965). In this case, results
obtained from a bifurcation buckling analysis can be used to
obtain credible estimates of the collapse load. Moreover, in
studying the general collapse behavior of shells, the researcher
is often interested in knowing the bifurcation-type response
for the sake of comparison. Furthermore, the parameters iden-
tified in a simpler bifurcation shell buckling analysis may be
adequate for use in characterizing the actual nonlinear collapse
behavior. A significant example of this approach is the well-
known nondimensional Batdorf Z parameter that has seen wide
use in buckling analyses of isotropic cylindrical shells (Gerard,
1962).

The present paper begins with a presentation of the Donnell-
Mushtari-Vlasov equations governing bifurcation buckling of
shallow shells that are thin, symmetrically laminated, and elas-
tic. The equations are put into a form suitable for nondimen-
sionalization, and the rationale used to perform the
nondimensionalization of the buckling equations is presented.
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Fig. 1 Geometry of a shallow shell

Fundamental parameters are then identified that represent

measures of the membrane and bending orthotropy and ani-

sotropy. Curvature parameters for symmetrically laminated

shells are then presented that are analogues of the Batdorf Z
parameter. Next, analogues to Donnell's and Batdorf's shell

buckling equations are presented. Last, selected results are

presented for shear buckling of balanced symmetrically lam-
inated shells to illustrate the usefulness of the nondimensional

parameters.

The analysis presented in the present paper was inspired by
the work presented by Stein (1982). For this reason, and for

many useful discussions on this subject, the author would like

to dedicate this paper to the late Dr. Manuel Stein of NASA

Langley Research Center who spent nearly 50 years studying

the buckling behavior of plates and shells.

Equations Governing Buckling

Equations governing buckling of thin elastic doubly curved

shallow shells have been derived by Nemeth (1991) from the

Donnell-Mushtari-Vlasov nonlinear equations in terms of lines-

of-curvature coordinates using the method of adjacent equi-

librium states. In the derivation, prebuckling displacements

normal to the surface are neglected and the lines-of-curvature

coordinates s_ and s2 with units of length are used to simplify

the form of the equations (see Fig. 1). The use of two arc-
length coordinates to parametrize the shell reference surface,

which is not developable in general, is consistent with the

assumptions of shallow shell theory that the surface metric
tensor equals the Kronecker delta function and that the surface

compatibility equation of Gauss is approximately satisfied. The

linearized equilibrium equations are given by

ONt aNtE ^ (la)
 s-7+ 0s-7=u

ONI2 +ON2=o (lb)
as1 Os2

O:MI + 2 02M12 + 02M2 Nl N2
"_l Os_Os2 a_ R2 R2

.,., 02w .,_ a2w 02w

(I0
where N_, N2, and N12 are the membrane stress resultants and

M_, M2, and m12 are the bending stress resultants of the ad-

jacent equilibrium state. The quantities N_l, N_2, and/_2 are

the membrane stress resultants of the primary equilibrium state

and are referred to herein as the prebuckling stress resultants.
The quantity w is the normal deflection of the shell at the

onset of buckling and is referred to herein as the buckling

displacement. The symbols R_ and R2 denote the principal radii
of curvature of the shell middle surface along the s_ and s2

coordinate directions, respectively. Similarly, the linearized
buckling compatibility equation is given by

21+ 02e2 a2_12 l _2W 1 a2w

where eh _2,and "r12are the membrane strainsof the adjacent

equilibrium state. The constitutive equations for a symmet-
rically laminated anisotropic shell are given by

Ni =AI#I +A1262 + A16"t'12 (30)

N2 = A t#l + A2262 + A26712 (3b)

N_2 = A 1#| + A2662 + A66"Y12 (3c)

a2W-D a2w °2w (40)
M: = -D_l 0_ 12"-_- 2D16 as_as------2

02W -- 02W 02W

M2= -Dr2 "_l -D22 "_-_2- 2D26 Os,Os2 (4b)

OZw aZw - a2w (4c)
Mlz = - Dl6 _- D26 _- 2Dos OSlOS2

where A_, A12, A22, and A66 are the orthotropic membrane

stiffnesses; A_ and A26 are the anisotropic membrane stiff-

nesses; D,, Dt2, 1)22, and D66 are the orthotropic bending

stiffnesses; and Dj6 and D26 are the anisotropic bending stiff-
nesses of classical laminated thin-shell theory (Dong, Pister,

and Taylor, 1962). The corresponding boundary conditions of

the boundary value problem are homogeneous and are not

listed herein for brevity.

Nondimensionalization Procedure and Parameters

Nondimensional parameters for the buckling of shallow shells

are obtained by building upon the procedure presented by

Batdorf (19470-c) for isotropic curved plates, by Stein (1982)

for flat specially orthotropic laminated plates, and by Nemeth

(1986) for fiat symmetrically laminated plates. The basic prem-
ise of the procedure is to make the field variables and their
derivatives of order one, to minimize the number of inde-

pendent parameters required to characterize the behavior, and

to avoid introducing a preferential direction into the nondi-

mensional equations.

The first step in the nondimensionalization procedure is to
formulate the boundary valve problem in terms of a single
equilibrium equation and a compatibility equation. This step

yields two coupled homogeneous linear partial differential

equations. To obtain these equations, the membrane stress

resultants of the adjacent equilibrium state are expressed in

terms of a stress function _ by

020

N1- 0_ (5a)

aq,
N2=-_7 (5b)

024,
NI2 = -- -- (5C)

Os_as2

This stress function satisfies Eqs. (In) and (lb) identically.

Eliminating these two equations from the boundary value

problem by introducing a stress function requires that the

buckling compatibility equation given by Eq. (2) be satisfied.
To put the buckling compatibility equation into a convenient

form, the inverted form of constitutive Eqs. (3a) through (3c)

is used to express the buckling strains in terms of the stress

function; i.e.,

a2@ 02@ 02¢

6, = a. -_2 + a12 _a_ - a,6 as,asz (6a)

02@ 02,:I, 02¢,

62 = a12 _ + a22 "_l - a26 as,as2 (6b)

02¢ a_,i, 02¢

where ate, a_2, a22, a_6, a26, and a66 are the membrane flexibility
coefficients of the shell and are functions of the membrane
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stiffnesses only. Substituting Eqs. (6) into Eq. (2) converts the

buckling compatibility equation into an equation in terms of

the stress function and buckling displacement. Following Stein

(1982), the following nondimensional coordinates are used:

$1 =st/Lt and S:= sz/L2 (7)

where L_ and L2 are characteristic dimensions of the shell

shown in Fig. 1. Substituting these nondimensional coordinates

into the buckling compatibility equation and normalizing by

a wei_ghted efl_._etric mean flexibility; i.e., multiplying through
by L_L2_/x/alia22, yields

2 04@ 34@ _ aqI, 5,_ #40

c_ __O--_+ 2c_mTm _+2_ _+2OSlOS: ,'.,. aSlOS_

where the nondimensional parameters appearing in the equa-

tion are given by

Lz (a22/au)l/4 (9a)
Otra= LI

2a12 + a_

/Z = 2N/al 1a22 (9b)

a26 (9c)
v,.= - (ajl_2)v,

and

O16

'Ln= -- (dla22)v 4. (9d)

Expressions for these parameters written in terms of shell mem-

brane stiffness coefficients are presented in the Appendix.

The next step in the nondimensionalization procedure is to

express the normal-direction equilibrium equation in terms of
the buckling displacement w and stress function @ by substi-

tuting Eqs. (4) and (5) into Eq. (lc). Performing this step,

introducing the nondimensional coordinates, and normalizing

by a weighted geometric mean stiffness; i.e., multiplying
through by L_L{/D_ttD_, yields

04w 04w _4w 5o 04w

1 a:w L2, _,I, r_ a2¢

82W _ 202w KI2"x2 O2w =0 (10)

where the nondimensional parameters appearing in the equa-

tion are given by

L2 (DI,/Dz2)I/4 (1 la)
c_b= L"_

3 =Dl; + 2D_ (1 lb)

D_6

"it'= 'D 3 D ,a:4 (llc)
_. 11 221

L_6
fit, = ID _ _t/4 (lid)

_. It 223

K_ - _r_-_uDz 2 (1 le)

N_L_ (1 lf)
K2 = 7r2%/-_i 1D22

Kl2= r2(D 1 _ _I/4"
(llg)

1 221

The parameters a0, fl, q'o, and 6b are parameters used to char-

acterize plate buckling (see Stein, 1982; Nemeth, 1986). Sim-

ilarly, the nondimensional functions Kh K2, and Kt2 give rise
to the usual definitions of buckling coefficients.

To obtain nondimensional equilibrium and compatibility
equations of order one, a new stress resultant function defined

by

F= O /x/-D_D22 (12)

is introduced into Eqs. (8) and (I0). Equilibrium Eq. (10)
becomes

O_w 4 04w 3_w 6_ O_w 10_w

L_ o32F L2_ O2F 20_2w 2 _2w KI2 "lr2 Ozw

N-2 os,osO.
03)

Similarly, substituting Eq. (12) into compatibility Eq. (8) and

simplifying gives

z O4F O4F O_F 6,, O'F

(x, ._ + 2_,,"/,,, #_tOS_ + 2V. _ + 2 or,,, 0S,3SI

+_,,_:a_-,,/_,,,,,,n,,v= Lr: as,_ R, . (14)

A factor of the right-hand-side of Eq. (14) is given by

1

(a_a22D_D22) _/'*

and has dimension 1/t, where t is the shell wall thickness. To

put Eq. (14) into a form of order one, a nondimensiona[ buck-

ling displacement W is introduced; i.e.,

W

W= (a_a_D_ _Dz_) t/4. (15)

The nondimensional displacement W defined in Eq. (I 5) has

a character that is similar to w/t. Using Eq. (15), Eq. (14)

simplifies to

a'F. O'F O'F 6= O4F
_ow.,z a,. OS_OS_

1 0'F -- I O2W _1'I'1+--_ _'_=_/12a,n Z:-_+Z,-_ (16)

where

Zi - Rtx/_(al taz2D_ tD22)t/_ (l 7a)

Z2 = ,-- l/a. (17b)
R2x/12(a_ _az2Dt _D22)

The term _ is factored out of the right-hand side of Eq.

(16) to cancel out a l/x/12 term that arises when Eqs. (17) are

specialized to isotropic shells. Expressions for Z_ and Z: written
in terms of shell membrane and bending stiffness coefficients

are presented in the Appendix. Equilibrium Eq. (13) also sim-

plifies to

_$4W _)_W _4W 5b /9_W

l O4 W ,--- F O2F a2F "]

+ T4;+,/.12[ z, J----,
: _W 2 O2W K,2r 2 a_W

-K:r -_Tc_-K:r TGT-2 =0. (18)

Compatibility Eq. (16) can be expressed in operator form

as

D,,, (F) - x/_Dc (IV) = 0 (19)

666 I Vol. 61, SEPTEMBER 1994 Transactions of the ASME



where Dm( ) and De( ) are membrane and shell curvature op-

erators, respectively, given by

2 a4F 04F t_4F
Dm(F)-am -_t + 2tXmTm _+2# os_as2

5_ 04F 1 a4F
+ 2 _ + -5- -- (20)

u_ OSlaS2 am _

and

02 W 0 2W

De(w)-Z: _ + z, -_T" (21)

The membrane operator given above simplifies to a nondi-

mensional form of the biharmonic operator for isotropic shells.

To put equilibrium Eq. (18) into a useful form, the non-

dimensional functions Kt,/<'2, and Ktz are expressed in terms

of a loading parameter ,_. These relationships are given by

Ki = - P_gi ( S1, S2).P (22a)

K2 = - Pa2 (S_, $2)t5 (22b)

KI2 = Pag3 (Sl, $2)/_ (22C)

where the minus signs are introduced to make compression

loads correspond to positive eigenvalues. The parameters Pt,

P2, and P3 are load factors that indicate the relative magnitudes

of the nondimensional membrane stress resultants prior to

buckling, and the functions gi (S_, $2) through g3(S_, $2) in-

dicate the corresponding spatial variations. Using these rela-

tions, Eq. (18) is expressed in operator form as

Db( W) +'_f-_Dc(F) =fiKs( I4/) (23)

where Db ( ) is a bending operator and Kg ( ) is a geometric
stiffness operator defined by

04 W a4W 04 W

6b d* W 1 3* W

(xb

a2W

K_( W) == - Pxg! (St, S2) _r2 OS--T

O2W _r2 i_ W

-Pzg2(S2, S2)_r 2"_'+2P3g3(81, 82) cto 8S1082" (25)

The bending operator given above also simplifies to a non-

dimensional form of the biharmonic operator for isotropic

shells.

Equations (19) and (23) and the corresponding homogeneous
boundary conditions constitute an eigenvalue problem. The

smallest value of the loading parameter fi for which the equa-

tions are satisfied constitutes buckling of the shell. The equa-

tions are nondimensional and each derivative is typically of

order one for buckle patterns that do not exhibit severe gra-

dients. Thus, the magnitude of the parameters multiplying each
derivative term is often a direct indication of the importance

of that term to the shell response. Moreover, the parameters

defined by Eqs. (lla) and (lib) and those defined by Eqs.
(llc) and (lid) characterize shell bending orthotropy and

bending anisotropy, respectively. Likewise, the parameters de-

fined by Eqs. (9) characterize shell membrane orthotropy and

anisotropy. The parameters Zt and Z2 are analogues of the

Batdorf Z parameter (Batdorf, 1947a-c) that has long been

used to characterize the effects of shell curvature on buckling

of isotropic cylindrical shells. The identification of these gen-
eralized shell curvature parameters in the present paper was

influenced to a great extent by Stein's work (1982), and thus

are referred to herein as the Batdorf-Stein Z parameters.

Analogues of Donnell's and Batdorf's Equations

Donnell showed that a single eighth-order differential equa-

z_"Et_t"__-%_
I_ Zt • 100

coefficient, 40-- /_ -1_

r,.. _'_ - _'_
2 3 v, 20_ _'_on (1).B2_)

I 10 100

Fig.2 Effect o! shell cu_sture on shear buckling resistance of isotrepi¢
shallow shells (LTILz= 1)
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Fig. 3 Effects o! bending anlaotropy and shell curvature on shear buck-
ling resistance (L,IL_ = II

tion could be obtained for isotropic cylindrical shells by elim-

inating the stress function appearing in the buckling equations
(see Batdorf, 1947a). Applying Donnell's approach to the

equations derived herein, Eq. (19) is operated on by the cur-

vature operator DA ) to give

Dm(Dc(F)) = n_i2D_c ( 149 (26)

where the order of the operators has been exchanged, in ac-
cordance with the commutative property of linear operators

with constant coefficients. Next, operating on Eq. (23) with

the membrane stiffness operator yields

D,,(Db( W) ) + n/-_Dm(D¢(F) ) =fiD,,,Kg( W). (27)

Substituting the right-hand side of Eq. (26) into Eq. (27) yields

an eighth-order partial differential equation referred to herein

as the Donnell-Stein equation; i.e.,

D,,(D_,( W) ) +12D{ ( W) =fiD,,K,( W). (28)

This equation simplifies to a nondimensional equivalent of

Donnell's equation for isotropic shells.

Batdorf (1947b,c, 1969) presented an alternative to Donnell's

equation that made use of inverse differential operators. The

equivalent of Batdorf's equation is obtained by expressing Eq.

(19) as

F = x/_D T_t (De(IV) ) (29)

where D_ 1( ) denotes the inverse differential operator. Com-

muting the order of the linear constant coefficient operators

in Eq. (29) and substituting the resulting equation into Eq.

(23) yields the desired equation; i.e.,

Db(W)+ I2D_[OT_t(Br)]-I_Kg(I¥)=O. (30)

This equation is an analogue of Batdorf's modified equilibrium

equation (Batdorf, 1947b) and is referred to herein as the
modified Batdorf-Stein equation. Equation (30) also simplifies
to a nondimensional equivalent of Batdorf's modified equation
for isotropic shells.

Selected Results and Discussion

Some selected results are presented in Figs. 2 and 3 for shear
buckling of balanced symmetrically laminated shallow shells

to demonstrate the usefulness of the nondimensional param-
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eters identified herein. The results were obtained from a Bub-
nov-Galerkin approximate solution to the modified Batdorf-
Stein equation given by Eq. (30). Details of the analytical
solution have been presented by Nemeth (199 I). A typical shell
is loaded on its edges by a uniform tangential shearing traction
r as shown in Fig. 2. For this loading,/v_12 (sl, s2) = r is the
only nonzero prebuckling stress resultant. The shell is sup-
ported such that the buckling displacement w and the rotations
Ow/Ssl and Ow/Os2 vanish along all the edges of the shell. In
addition, the membrane displacements normal to each edge of
the shell are restrained and no additional tangential shearing
tractions occur due to buckling. The buckling resistance of a
shell is indicated in the figures by the nondimensional shear
buckling coefficient Ks defined by

TL,2
Ks=vr2(DliD_2)j/4 (31)

where r is the applied uni form shearing traction. For the results
presented in the figures, the orthotropic parameters (c_, fl, c_r_,
and t_) and the anisotropic parameters (3'b, 6b, 3'm, and _5_,)that
are not varied are set equal to one and zero, respectively. This
baseline set of values corresponds to an isotropic shell with
sides of equal length (Lj = L2).

Results showing shear buckling coefficient as a function of
the Batdorf-Stein shell curvature parameters, Zl and Z2, are
presented in Fig. 2. The abscissa of the plot shown in Fig. 2
is measured by a logarithmic scale. Results are shown in this
figure for Z_ = 0 and Z2 = I, which correspond essentially
to flat plates, and for shells with zero (Z_Z2 = 0), negative
(ZIZ2 < 0), and positive (ZIZ2 > 0) Gaussian curvature with
magnitudes of ZI and Z2 ranging from 0 to 100. The analytical
results presented in Fig. 2 predict that the shear buckling re-
sistance of a shell is significantly influenced by shell curvature,
especially for the larger values of Z_ and Z2 shown in the figure.
The results also indicate that the shells with positive Gaussian
curvature are more buckling resistant than those with negative
Gaussian curvature, which, in turn, are typically more buckling
resistant than those with zero Gaussian curvature. Flat plates
exhibit the lowest buckling resistance.

Results showing shear buckling coefficient as a function of
the curvature parameters, Z_ and Z2, and the bending aniso-
tropy parameters "rb and tSbare presented in Fig. 3. Results are
shown in this figure for fiat plates (Zl = Z2 = 0) and for
shells with positive Gaussian curvature corresponding to Z_ =
Z2 = 100. Values of the anisotropic parameters range from 0
to 0.5. This range of values is considered to be representative
of a large class of laminated plates (Nemeth, 1986). Results
are presented in Fig. 3 corresponding to both positive (as shown
in the figure) and negative directions of the applied shearing
traction, in accordance with the presence of bending aniso-
tropy.

The results presented in Fig. 3 predict that the shear buckling
resistance of a shell with positive Gaussian curvature is more
sensitive to variations in the anisotropic (bending) parameters
than a corresponding fiat plate. The results show substantial
reductions in buckling resistance with increasing values of the
anisotropic parameters for shells loaded in positive shear, and
similar increases in buckling resistance for shells loaded in
negative shear. Similar results were obtained for a correspond-
ing shell with negative Gaussian curvature that indicate the
same trend, but not to as large as extent as exhibited by the
shell with positive Gaussian curvature.

The generic results presented in Figs. 2 and 3 apply to many
laminate constructions, and show that varying parameters in-
dependently can give insight into the factors strongly affecting
the structural response. For example, by independently varying
the parameters associated with shell curvature, positive values
of Gaussian curvature are found to improve substantially the
shear buckling resistance of a shell. In addition, shell curvature

was determined to affect significantly the importance of the
bending anisotropy on the shear buckling resistance. Both of
these observations clearly indicate the benefits of using non-
dimensional parameters to formulate the analysis and to per-
form parametric studies.

Concluding Remarks

A method of deriving nondimensional equations and iden-
tifying the fundamental parameters associated with bifurcation
buckling of shallow, anisotropic shells subjected to combined
loads has been presented. Specifically, analysis has been pre-
sented for symmetrically laminated doubly curved shells that
exhibit both membrane and bending anisotropy, and the pro-
cedure and rationale required to obtain useful nondimensional
forms of the transverse equilibrium and compatibility equa-
tions for buckling have been discussed. The analysis presented
herein yields fundamental parameters that explicitly and com-
pactly indicate the effects of both membrane and bending
orthotropy and anisotropy, and the effects of curvature on
shallow shell buckling behavior. An important contribution
of this work is the development of anisotropic analogues of
the well-known Batdorf Z shell curvature parameter for sym-
metrically laminated anisotropic shells with compound cur-
vature, and corresponding analogues of Donnell's and
Batdorf's shell buckling equations.

Results obtained from a Bubnov-Galerkin solution to a rep-
resentative example problem have also been presented. The
results indicate the utility of recasting the shell buckling equa-
tions in terms of nondimensional parameters to conduct par-
ametric studies that are generic and well suited to the
preliminary design of laminated composite shells. Moreover,
the analytical results predict that shells with positive Gaussian
curvature are much more resistant to shear buckling than cor-
responding fiat plates or shells with negative and zero Gaussian
curvature. In addition, the results predict that the importance
of bending anisotropy on shear buckling resistance is signifi-
cantly affected by shell curvature.
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APPENDIX

Parameters in Terms of Membrane Stiffnesses

The parameters a,., #, 3',., _5,_,Z_, and Z2 have been given

668 I Vol. 61, SEPTEMBER 1994 Transactions of the ASME



in the present paper in terms of membrane flexibility coeffi-

cients. More convenient forms of these parameters are obtained

by expressing them in terms of the membrane stiffness coef-

ficients. Inverting the membrane stiffness matrix [.4] associated
with Eqs. (6) and substituting the resulting expressions into

the expressions for the nondimensional parameters gives

1.2 (A_A_-._I6_'(2 \ t:4
cx'_=-_1 \A22A_- A_6] (A1)

A.A22-A_2- 2,4 _2A,_ + 2,4 i_4_

_ ='2[(AllA_- A_6) (A22A_- A_6)] 1/2 (A2)

AI1A26- A12AI6
"}"n= 2 3 2 1/4 (A3)

[(AnAl-A)6) (AzzA_-Az6)]

A2_16- A12A26
_m-- 2 2 3 1/4 (A4)

[ (AnAs_- At6) (A22A66- A26) ]

_ L_ 2 2 2 _,2[.(AHA_- A_2)A_-AHA_.- A_A_I_-t- 2A,2AI6A2_

L 12[(A"A_-A?6)(A_a-AI')DHDui'/2 J

(A5)

where i appearing in Eq. (A5) is a free index that takes on the

values of I and 2. For balanced symmetric laminates with A _6

andA26that are zero valued, 3,,. = 0 and 8m = 0. The remaining
nonzero parameters simplify to

L2

c(m=-_l (All�A22) TM (A6)

AliA22 - A212- _4 12A66
(AT)

#= 2A_

L_Z A t tA 22- A22
Zi (AS)R, 12_/A l lA2_Dl iD_

@

In addition, when the bending stiffnesses DI6 and/)26 are zero

valued, % = _t, = O. Similarly, for isotropic shells, the nonzero

parameters are given by

L2

c_m= at, = L--_ (Ag)

/_ = fl = l (AI0)

z_=_ -(I v2) _/2 (All)

where t is the total shell thickness and v is Poisson's ratio.
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